Act	vivity 27 Matrix arithmetic		
2.	$\begin{bmatrix} 4 & 6 \\ 1 & 5 \end{bmatrix}$ $\begin{bmatrix} 2 & 10 \\ 4 & 6 \end{bmatrix}$	$ \begin{array}{c} \textcircled{\begin{tabular}{lllllllllllllllllllllllllllllllllll$	
	$\begin{bmatrix} 9 & 3 \\ -3 & 6 \end{bmatrix}$ $\begin{bmatrix} 11 & 13 \\ 1 & 12 \end{bmatrix}$	$\begin{bmatrix} -1 & 3\\ 2 & -2\\ 5 & 1 \end{bmatrix} \Rightarrow C$	$\begin{bmatrix} 1 & 5 \\ 2 & 3 \end{bmatrix}$
5.	Not possible invalid dimension The matrices have different sizes, i.e. C has 3	$\begin{bmatrix} -1 & 3\\ 2 & -2\\ 5 & 1 \end{bmatrix} \Rightarrow C$	$\begin{bmatrix} -1 & 3\\ 2 & -2\\ 5 & 1 \end{bmatrix}$
6.	rows and A has 2 rows. Not possible invalid dimension The matrices have different sizes.	$\begin{bmatrix} 1 & 2 & -2 \\ 4 & 2 & -1 \\ 3 & -1 & 2 \end{bmatrix} \Rightarrow D$	$\begin{bmatrix} -1 & 3\\ 2 & -2\\ 5 & 1 \end{bmatrix}$
	$\begin{bmatrix} 5 & 18 \\ 3 & 1 \end{bmatrix}$ $\begin{bmatrix} -2 & 11 \end{bmatrix}$	А+В	$\begin{bmatrix} 1 & 2 & -2 \\ 4 & 2 & -1 \\ 3 & -1 & 2 \end{bmatrix}$
8. 9.	$\begin{bmatrix} -2 & 11 \\ 3 & 8 \end{bmatrix}$ BC seen as a single variable. B×C is not possible.	2B 3A	$\begin{bmatrix} 4 & 6 \\ 1 & 5 \end{bmatrix}$ $\begin{bmatrix} 2 & 10 \\ 4 & 6 \end{bmatrix}$
10.	$\begin{bmatrix} -7 & -3 \\ -5 & 7 \\ 5 & 13 \end{bmatrix}$	2B+3A A×B	$\begin{bmatrix} 9 & 3 \\ -3 & 6 \end{bmatrix}$ $\begin{bmatrix} 11 & 13 \\ 1 & 12 \end{bmatrix}$
11.	Not possible invalid dimension. The number of columns in the first matrix is not the same as the number of rows in the second matrix.	B×A	$\begin{bmatrix} 5 & 18 \\ 3 & 1 \end{bmatrix}$ $\begin{bmatrix} -2 & 11 \\ 3 & 8 \end{bmatrix}$
	$\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$	BC D×C	BC
13. 14.	Not possible invalid dimension B×A is a 2×2 matrix whereas C is 3×2. [1 0]	A^2	$\begin{bmatrix} -5 & 7 \\ 5 & 13 \end{bmatrix}$ $\begin{bmatrix} 8 & 5 \\ -5 & 3 \end{bmatrix}$
14.	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	B^(-1)B	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$